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Abstract

Large language models (LLMs) excellently
generate human-like text, but also raise con-
cerns about misuse in fake news and academic
dishonesty. Decoding-based watermark, par-
ticularly the GumbelMax-trick-based water-
mark (GM watermark), is a standout solution
for safeguarding machine-generated texts due
to its notable detectability. However, GM wa-
termark encounters a major challenge with gen-
eration diversity, always yielding identical out-
puts for the same prompt, negatively impact-
ing generation diversity and user experience.
To overcome this limitation, we propose a new
type of GM watermark, the Logits-Addition wa-
termark, and its three variants, specifically de-
signed to enhance diversity. Among these, the
GumbelSoft watermark (a softmax variant of
the Logits-Addition watermark) demonstrates
superior performance in high diversity settings,
with its AUROC score outperforming those of
the two alternative variants by 0.1 to 0.3 and
surpassing other decoding-based watermarking
methods by a minimum of 0.1.1

1 Introduction

The emergence of large language models (LLMs),
exemplified by GPT-4 (OpenAI, 2023a), has en-
abled the generation of remarkably human-like con-
tent, facilitating tasks such as writing (Shanahan
and Clarke, 2023), coding (Chen et al., 2021), and
fostering creativity. However, this technological ad-
vancement brings forth the potential for malicious
applications, including social engineering (Mirsky
et al., 2023), fake news fabrication (Zellers et al.,
2019), and academic dishonesty. Consequently, the
need for effective detection of machine-generated
texts has become increasingly critical.

Various strategies have been proposed to dis-
tinguish machine-generated texts from human-
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Figure 1: One significant limitation of GM watermark
lies in their production of identical responses to the same
queries. Such determinism can lead to user dissatisfac-
tion, as individuals may become frustrated with LLM
recommending the same outcomes for repeated prompts.
This issue primarily stems from the deterministic nature
of both the Pseudo-random function and the Decoder
function. To address this concern, we propose three
solutions: Solutions I and II aim to introduce variability
into the Decoder function, whereas Solution III seeks to
inject uncertainty into the Pseudo-random function.

written texts, and decoding-based watermarking
has emerged as a highly effective approach. This
technique embeds subtle patterns into the text dur-
ing the decoding stage of LLM, which designated
algorithms can identify. The GumbelMax-trick-
based watermark (GM watermark), introduced by
Aaronson and Kirchner (2023) as their Exponen-
tial watermark, is a prominent example within this
category, known for its exceptional detectability
and low perplexity for generated text. However,
a critical limitation of this method is its tendency
to produce identical outputs for the same prompt,
which could adversely affect both the diversity of
the model’s outputs and the overall user experience,
as illustrated in Figure 1.



To address the challenge of generating diverse
outputs of the GM watermark, our analysis delves
into the core mechanism of decoding-based water-
marks. We discover that these watermarks share a
cohesive framework, as illustrated in Figure 3. The
primary cause of uniform completions for identical
prompts is traced back to the deterministic nature
of both the Decoder and Pseudo-random functions
in the GM watermark. To mitigate this, we pro-
pose two strategies to introduce variability into the
Decoder function and one strategy to the Pseudo-
random function: 1) Implement a drop mechanism
with a predefined probability dp, enabling direct
sampling from the language model without water-
mark insertion. 2) Replace the “argmax” operation
in GumbelMax watermark with “sampling from
softmax” with temperature τ . 3) Adjust the water-
mark key, derived from the Pseudo-random func-
tion, by cyclically shifting it r positions—a method
to effectively randomize the watermark key.

A critical aspect of this exploration is balancing
detectability with diversity. Integrating a dropout
probability and shifting the watermark key boosts
diversity but also reduces detectability. We propose
replacing the argmax operation with “sampling
from softmax” to enhance diversity without sig-
nificantly compromising the watermark’s integrity.
This approach ensures that even though selections
diverge from “argmax”, they still achieve high per-
token scores, preserving the statistical foundation
of the watermark. Further investigation into GM
watermark leads us to question the necessity for
an exponential transformation in the GumbelMax-
trick for embedding watermarks, a technique out-
lined by Aaronson and Kirchner (2023). Instead,
we employ the GumbelMax-trick directly for water-
mark embedding and propose a distinct type of GM
watermark, termed the Logits-Addition watermark.

Our experiments reveal that the GumbelSoft wa-
termark, the softmax variant of the Logits-Addition
watermark, consistently outperforms other GM wa-
termark diversified variants in the AUROC metric,
achieving a margin of 0.1 to 0.3 in high diversity
settings. Additionally, the GumbelSoft watermark
surpasses other decoding-based watermarks in AU-
ROC by at least 0.1 on QA tasks, while maintaining
low perplexity.

For a clearer understanding of these findings,
we have illustrated the relationships among the
GumbelMax-trick, the GM watermark (including
Exponential and Logits-Addition), and their diver-
sified variants in Figure 2. In conclusion, our
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Figure 2: GumbelMax-trick can be used in text wa-
termarking via two different ways: Exponential and
Logits-Addition watermark. Each watermark has three
variants to enhance generation diversity. The red part
denotes our contribution, and the softmax variant of the
Logits-Addition watermark is our suggested Gumbel-
Soft watermark.

contributions are threefold:

• We identify the deterministic nature of the
Pseudo-random and Decoder functions as the
primary cause behind GM watermark producing
identical completions for the same prompts and
provide a universal framework for all decoding-
based watermarking techniques.

• We propose the Logits-Addition watermark as
a new type within the GM watermark suite and
analyze the expectation and variance for the per-
token score. Additionally, we introduce three
variants of GM watermark aimed at enhancing
the diversity of generated content.

• Our experiments with three varied GM water-
mark versions reveal that the GumbelSoft wa-
termark surpasses the others in diversity and de-
tectability. Furthermore, our comparative analy-
ses with other decoding-based watermarks show
that the GM watermark offers superior detectabil-
ity and robustness while maintaining quality on
par with existing methods.

2 Related Work

Machine-generated text detection can be roughly
categorized into three approaches.

Zero-shot Methods. This approach, or “model
self-detection” requires full access to the language
model and uses statistical measures like perplexity
and entropy. Notable works include Gehrmann et al.
(2019)’s GLTR, Vasilatos et al. (2023)’s perplexity
analysis, and Yang et al. (2023a)’s N-gram overlaps.



Mitchell et al. (2023) introduced a perturbation-
based method, and Deng et al. (2023) proposed a
Bayesian surrogate model. The limitation of zero-
shot methods is their need for complete language
model access.

Training-Based Methods. These involve clas-
sifiers trained to distinguish between machine-
generated and human-written texts. Chen
et al. (2023); Liu et al. (2023c) use a fine-
tuned RoBERTa model (Liu et al., 2019), while
Mireshghallah et al. (2023) advocate for partially
trained models. Some researchers also use shal-
low classifiers with extracted text features (Li
et al., 2023; Tulchinskii et al., 2023). A draw-
back of training-based methods is their potential
over-fitting to specific datasets and models.

Watermarking Techniques. Recent advance-
ments include hidden signal watermarking in texts,
categorized into post-edited and decoding-based
watermarking. Post-edited involves text formatting
or lexical changes (Brassil et al., 2002; Sato et al.,
2023; He et al., 2022; Yoo et al., 2023a), while
decoding-based watermarking in the LLM era em-
beds statistical signals during decoding. Notable
techniques include Kirchenbauer et al. (2023)’s
red-green list and Zhao et al. (2023)’s robust water-
marking. Unbiased watermarks preserving original
token distributions are explored by Kuditipudi et al.
(2023); Hu et al. (2023). Additionally, multi-bit
watermarking, which embeds complex informa-
tion, is examined by Wang et al. (2023); Yoo et al.
(2023b).2

3 Method

Algorithm 1 GumbelSoft Generator
Input: prompt x, LLMM, temperature τ .
Output: Watermarked completion w1, . . . , wT

1: for t = 1, . . . , T do
2: Logits lt ←M(x,w1,...,t−1)
3: Watermark key ξt ←hash context to a

Gumbel-distributed vector
4: wt ←sample from softmax((ξt + lt)/τ)
5: end for
6: return [w1, . . . , wT ]

In this section, we will first provide an overview
of the decoding-based watermark framework and
the GumbelMax-trick. Following this, we’ll delve

2For more related work, please refer to Appendix D.

Algorithm 2 GumbelSoft Detector
Input: Text input w1,...,T ; a predefined threshold ϵ
Output: Boolean indicator: True if watermark de-

tected, False otherwise
1: for t = 1, . . . , T do
2: Watermark key ξt ←hash context to a

Gumbel-distributed vector
3: Per-token score st ← ξt[wt]
4: end for
5: Calculate Final statistic S:

S = Φ(s1, s2, . . . , sT ) =

√
6T

π
(

∑T
i=1 si
T

−γ)

with γ ≈ 0.5772 denoting the Euler-
Mascheroni constant.

6: return True if S ≥ ϵ else False.

into the application of the GumbelMax-trick in
text watermarking and examine their limitations.
Concluding the section, we will present our recom-
mended watermark scheme, specifically crafted to
overcome these identified limitations.

3.1 Preliminaries

Decoding-Based Watermark Framework. We
introduce a concise watermark framework with two
main components: the Watermark Generator and
Detector, building upon the architecture outlined
in Fernandez et al. (2023) and incorporating math-
ematical concepts from Kuditipudi et al. (2023);
Christ et al. (2023). Figure 3 and Table 1 detail the
framework’s structure and notations.

GumbelMax-trick. The GumbelMax-trick, as
proposed by Gumbel (1954), presents an efficient
method for sampling from a categorical distribu-
tion. Consider a vector of logits l = (l1, . . . , lK)
coupled with a sequence of Gumbel-distributed
random variables g1, . . . , gK ∼ Gumbel(0, 1).
A sample from the categorical distribution π =
(π1, . . . , πK) = softmax(l1, . . . , lK) can be ob-
tained as follows: w = argmaxi (gi + li).
This sampling approach is referred to as the
GumbelMax-trick. It can be demonstrated that this
trick is mathematically equivalent to drawing a
sample directly from the categorical distribution π,
as detailed in the Appendix B.1.

3.2 Watermark Design

Unbiasedness. The GumbelMax-trick enables
the creation of an unbiased watermark, which is in-
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Figure 3: General framework of decoding-based watermark. The Generator uses logits vector lt and watermark
key ξt to decode the next token wt. The Detector, employing scorer ϕ, assesses the correlation between watermark
key ξt and token wt, then combines these per-token scores to determine watermark presence. Both Generator
and Detector share the same pseudo-random function Fsk. The context for watermark key calculation can be the
preceding h tokens.

Symbol Meaning

V Vocabulary, the set of tokens
wt Token at position t
Wg : V∗ → V∗ Watermark Generator, generate a watermarked completion for a given prompt
D : V∗ → {True, False} Watermark Detector, detect whether a text is watermarked or not
lt ∈ R|V| Logits vector for position t, produced by language model M
M : V∗ → R|V| Language model, give the logits vector lt for position t based on a proceeding tokens
Ξ Watermark key space, the set of all possible watermark keys
ξt ∈ Ξ Watermark key at position t
C Context space, the set of all possible contexts
Fsk : C → Ξ Pseudo-random function, calculate the watermark key ξt
Γ : R|V| × Ξ → V Decoder function, decode the next token wt from logits vector and watermark key
ϕ : V × Ξ → R Scorer function, calculate per-token score st for each token
Φ : R∗ → R Statistic aggregator, compile all per-token scores into one final statistic

Table 1: Summary of notations.

distinguishable from unwatermarked text, provided
the watermark key’s distribution is properly cho-
sen. An unbiased watermark meets the following
conditions:

Pξ∼τ(·)[Γ(ξ, l) = x] = px, ∀x ∈ V

where p is the softmax of l and τ(.) denotes the wa-
termark key ξ’s distribution. Watermark schemes in
Aaronson and Kirchner (2023); Wu et al. (2023b);
Kuditipudi et al. (2023) are unbiased, unlike the
biased method of Kirchenbauer et al. (2023).

Logits-Addition Watermark. The first attempt
to use GumbelMax-trick in text watermarking is
Aaronson and Kirchner (2023)’s Exponential wa-
termark, which generates subsequent tokens us-
ing the formula wt = argmaxi

log ξt[i]
pt[i]

, where

ξt ∼ Uniform(0, 1)|V| and pt = softmax(lt). Its
detection mechanism computes a per-token score
st = − log(1− ξt[wt]).

While the Exponential watermark is linked
to empirical entropy, we question the relevance
of this connection given that empirical entropy
does not accurately reflect the true entropy of



the next-token distribution provided by the lan-
guage model. Consequently, we introduce a new
type of GM watermark that directly incorporates
Gumbel noise into the logits vector for next-token
sampling: wt = argmaxi (lt[i] + ξt[i]), where
ξt ∼ Gumbel(0, 1)|V| and lt represents the logit
vector. This method’s detection algorithm calcu-
lates a per-token score st = ξt[wt], a technique we
designate as the Logits-Addition Watermark.

We assert that despite the token generation pro-
cesses of these two methods being equivalent (see
Appendix B.2), their detection mechanisms differ.
Furthermore, the softmax variant of our Logits-
Addition watermark demonstrates superior diver-
sity and detectability compared to the Exponential
watermark’s softmax variant (refer to Figure 4).
This supports our rationale for applying Gumbel
noise directly and adopting an alternative detection
method. Moreover, we present a theorem detailing
the expectation and variance of the per-token score
within the Logits-Addition watermark.

Theorem 1. Consider a text w1, . . . , wT embed-
ded with a watermark using the Logits-Addition
technique. When evaluated by the Logits-Addition
watermark detector, the expected value and vari-
ance of the score for each token are given by

E[st] =E[ξt[wt]] = − log(pt[wt]) + γ,

Var [st] ≤
2pt [wt]

2

(1− pt [wt])
3 +

2

pt [wt]

− (− log pt [wt] + γ)2 .

For a non-watermarked text w1, . . . , wT , apply-
ing the Logits-Addition watermark detector, the
expected value and variance for each per-token
score are

E[st] = E[ξt[wt]] = γ,

Var[st] = Var[ξt[wt]] =
π2

6
.

Here, γ denotes the Euler-Mascheroni constant,
and pt = softmax(lt), is derived from the language
model.

The proof for this theorem can be found in Ap-
pendix B.3. According to this theorem, if certain
watermarked tokens are assigned a low probabil-
ity by the language model, the expectation of their
per-token scores, given by− log(pt[wt])+γ, signif-
icantly increases. This makes these tokens notably
easier to detect.

Limitations of the GM Watermark. Despite
its effectiveness in watermarking texts, the
GumbelMax-trick has limitations. One major lim-
itation is that it generates deterministic outputs,
resulting in identical completions for the same
prompts (as shown in Figure 1). Such determinism
can lead to user dissatisfaction, as individuals may
become frustrated with LLM consistently recom-
mending the same outcomes for the same queries.
To address this issue and improve output diversity,
we propose three diversified GM watermark vari-
ants. These variants are thoroughly outlined in the
Introduction section (see Section 1) and are aimed
at enhancing the diversity of the generation pro-
cess.

3.3 GumbelSoft Watermark

After conducting a comprehensive series of ex-
periments with three diversified variants of both
the Exponential and Logits-Addition watermarks,
we identified the GumbelSoft watermark as the
most effective, achieving Pareto optimality. The
methodologies for both the Generator and Detec-
tor of the GumbelSoft watermark are elaborated in
Algorithms 1 and 2, respectively.

We now explain the key insight behind the Gum-
belSoft watermark. The Logits-Addition water-
mark is primarily characterized by differing ex-
pected per-token scores for watermarked and un-
watermarked texts. Leveraging this difference al-
lows for the construction of a detection mechanism
based on the null hypothesis H0: The text is un-
watermarked. Following the z-test by Kirchen-
bauer et al. (2023), we devise the final statistic S
of Logits-Addition watermark to be:

S = Φ(s1, s2, . . . , sT ) =

√
6T

π

(∑T
i=1 si
T

− γ

)

According to expectation Theorem 1 and the cen-
tral limit Theorem (Fischer, 2011), we notice that
for unwatermarked texts, S aligns with a standard
Gaussian distribution. In contrast, for watermarked
texts, S deviates, typically presenting significantly
higher values. Given that GumbelSoft is a variant
of Logits-Addition, it naturally inherits its char-
acteristics. Consequently, the majority of tokens
sampled by the GumbelSoft watermark are likely
identical to those selected by the Logits-Addition
watermark. Moreover, tokens not usually favored
by Logits-Addition are observed to have compara-
tively higher per-token scores.
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4 Experiment

This section presents a comparative study of three
diversified variants (refer to Figure 1) of both Ex-
ponential and Logits-Addition watermarks, with an
emphasis on aspects such as detectability, diversity,
and quality. Following this, the optimal diversified
variant of the GM watermark, the GumbelSoft wa-
termark, is identified and compared against several
existing decoding-based watermark schemes (see
Appendix A for details).

4.1 Experimental Setting
We briefly outline our experimental setup, includ-
ing the datasets, models, metrics, and baselines
used, specifically for the Completion and QA tasks.

Dataset and Models. In our experimental setup,
each task employs unique language models and
datasets. For the Completion task, the Llama2-7b
model (Touvron et al., 2023) and C4 dataset (Raffel
et al., 2019) are used to assess detectability, while
diversity is evaluated through 20 high-entropy
prompts repeated 50 times each on Llama2-7b. Per-
plexity is calculated using Llama2-13b with the C4
dataset. For the QA task, we utilize the Llama2-7b-
chat model and Alpaca dataset (Taori et al., 2023)
for detectability, and assess diversity with 20 chat-
like prompts on Llama2-7b-chat, also repeated 50
times. Perplexity here is measured using Llama2-
13b-chat on the Alpaca dataset.

Metrics. Our detectability evaluation relies on
AUROC, FPR at a fixed FNR of 0.01, and FNR at

a fixed FPR of 0.01. We assess generation qual-
ity using perplexity, derived from a larger model.
To measure generation diversity, our approach in-
cludes Self-BLEU and Distinct 1-gram and 2-gram.

Baselines. The universal decoding-based water-
mark framework, as presented in Figure 3, serves to
categorize all decoding-based watermark schemes,
including those proposed by Kirchenbauer et al.
(2023); Aaronson and Kirchner (2023); Wu et al.
(2023b); Kuditipudi et al. (2023). These schemes
are the baselines in our study. Their mathematical
representations, provided in Appendix A, illustrate
their integration into our unified taxonomy.

4.2 Diversity

This subsection aims to identify which variant of
the two GM watermark is best in terms of diver-
sity and detectability. A detailed comparison of
our GumbelSoft watermark with other GM water-
mark variants in the QA task is presented in Ta-
ble 2, with results for the Completion task detailed
in Appendix C.1. These results indicate that our
GumbelSoft method achieves superior content di-
versity and detectability compared to other variants,
though it incurs a slight increase in perplexity. We
also notice that the GumbelSoft watermark is better
than the softmax variant of the Exponential water-
mark under the same temperature setting, which is
clearly shown in Figure 4.

While methods like drop probability and water-
mark key shift can enhance diversity, they tend to
negatively impact detectability. The decrease in de-
tectability due to drop probability may be attributed
to a fraction of tokens not being sampled using the
watermark key, thereby diluting the overall statis-
tical strength. In the case of shifted watermark
keys, the detection phase becomes more complex
as every possible shift must be tested to identify
the watermark, potentially leading to inflated statis-
tics for unwatermarked texts and thus reducing de-
tectability. In contrast, our GumbelSoft watermark
does not encounter these issues, maintaining high
detectability while also enhancing generation diver-
sity.

4.3 Detectability and Quality

This subsection aims to show that GumbelSoft wa-
termark is better than other decoding-based wa-
termarks in terms of detectability, the results are
shown in Table 3 and the hyperparameter is detailed
in Appendix C.2.
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Self-Bleu ↓ Dist-1 ↑ Dist-2 ↑ AUROC ↑ FPR ↓ FNR ↓ PPL ↓
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vanilla 1.000 0.011 0.017 0.905 0.749 0.569 1.985

drop_prob=0.10 0.852 0.070 0.196 0.891 0.790 0.623 2.020
drop_prob=0.20 0.767 0.087 0.261 0.871 0.835 0.691 2.015
drop_prob=0.30 0.715 0.097 0.298 0.845 0.870 0.752 2.077
drop_prob=0.40 0.676 0.103 0.325 0.816 0.896 0.808 2.000

shift_max=30 0.902 0.080 0.227 0.742 0.946 0.825 1.996
shift_max=50 0.839 0.090 0.266 0.700 0.963 0.882 1.985

shift_max=100 0.741 0.101 0.311 0.672 0.963 0.900 1.982
shift_max=200 0.689 0.106 0.331 0.644 0.970 0.901 1.983

soft_temp=0.2 0.811 0.084 0.233 0.904 0.748 0.586 2.372
soft_temp=0.3 0.782 0.087 0.254 0.901 0.756 0.597 2.096
soft_temp=0.4 0.755 0.094 0.276 0.900 0.794 0.598 2.239
soft_temp=0.5 0.736 0.096 0.288 0.898 0.798 0.602 2.127

L
og

its
-A

dd
iti

on

vanilla 1.000 0.011 0.017 0.908 0.743 0.579 1.985

drop_prob=0.10 0.823 0.074 0.212 0.887 0.769 0.634 1.998
drop_prob=0.20 0.762 0.089 0.263 0.867 0.830 0.701 1.994
drop_prob=0.30 0.713 0.097 0.300 0.846 0.833 0.748 2.088
drop_prob=0.40 0.691 0.102 0.316 0.810 0.888 0.808 1.988

shift_max=30 0.906 0.080 0.224 0.730 0.961 0.838 1.986
shift_max=50 0.824 0.092 0.272 0.694 0.965 0.886 1.986

shift_max=100 0.751 0.101 0.309 0.670 0.971 0.903 1.981
shift_max=200 0.694 0.106 0.331 0.642 0.981 0.917 1.981

soft_temp=0.2 0.803 0.083 0.235 0.910 0.726 0.568 2.338
soft_temp=0.3 0.745 0.095 0.281 0.911 0.704 0.572 2.027
soft_temp=0.4 0.713 0.098 0.300 0.914 0.713 0.570 2.169
soft_temp=0.5 0.680 0.105 0.326 0.912 0.742 0.571 2.221

Table 2: Comparison of three diversified variants of both Exponential and Logits-Addition watermarks in the QA
task. These variants include drop_prob=0.2, sampling from the language model directly at a 0.2 probability;
shift_max=100, where the watermark key is cyclically shifted within a 0-100 range; and soft_temp=0.3, which
uses a softmax sampling with a temperature of 0.3 to balance randomness. Vanilla is the original GM water-
mark(Exponential and Logits-Addition) without any technique to enhance diversity. The detectability is measured
by 100 detection tokens. Note that Logits-Addition+soft_temp is the GumbelSoft watermark. GumbelSoft is the
best of three diversified variants of GM watermark in terms of both detectability and diversity.

GumbelSoft watermark exhibits the highest de-
tectability, likely explained by the expectation and
variation theory in Theorem 1. Increased detection
token amounts also improve detectability, align-
ing with findings from Chakraborty et al. (2023).
The high-entropy Llama2-7b model in Completion
tasks shows greater detectability than the lower en-
tropy Llama2-7b-chat in QA tasks, as high entropy
facilitates easier watermark embedding. Regarding
generation quality (perplexity), GumbelSoft shows
relatively low perplexity. In contrast, the KGW wa-
termark’s biased logits modification leads to high
perplexity, while Dipmark’s strategy of amplifying
high-probability tokens results in the lowest per-
plexity in the Completion task. For the QA task,
the low perplexity across all methods, attributed to
the low entropy of Llama2-7b-chat, diminishes the
value of comparative perplexity analysis.

4.4 Robustness

In this section, we assess the robustness of vari-
ous decoding-based watermarking schemes, with
results for the Completion task in Figures 5 and for
the QA task in Appendix C.3. All texts, both wa-
termarked and unwatermarked, were tested under
the T5-span attack (explained in Appendix C.3).

Our key finding reveals that the Exponential
and GumbelSoft watermarks are particularly ro-
bust against the T5-span attack, in contrast to
other watermarks. Their AUROC values, as well
as FPR and FNR metrics, remained stable post-
attack, while other schemes experienced signifi-
cant declines. This robustness can be attributed
to the effective embedding of watermarks by the
GumbelMax-trick, ensuring significant final statis-
tics despite per-token score alterations. Further
analysis, involving a comparative study of final



# tokens=40 # tokens=60 # tokens=100

AUROC ↑ FPR ↓ FNR ↓ AUROC ↑ FPR ↓ FNR ↓ AUROC ↑ FPR ↓ FNR ↓ PPL ↓
C

om
pl

et
io

n Unwatermarked - - - - - - - - - 11.576
KGW 0.970 0.616 0.361 0.988 0.329 0.164 0.997 0.078 0.041 14.217

Exponential 0.997 0.012 0.012 0.999 0.000 0.006 1.000 0.000 0.000 10.953
Dipmark 0.935 0.693 0.565 0.968 0.483 0.362 0.988 0.274 0.153 8.664

ITS 0.961 0.073 1.000 0.978 0.040 1.000 0.994 0.010 0.402 11.843
GumbelSoft 0.998 0.011 0.010 1.000 0.000 0.005 1.000 0.000 0.001 11.820

Q
A

Unwatermarked - - - - - - - - - 1.980
KGW 0.657 0.985 0.969 0.701 0.978 0.945 0.754 0.949 0.901 2.081

Exponential 0.780 0.892 0.813 0.840 0.852 0.738 0.905 0.749 0.569 1.985
Dipmark 0.588 0.988 0.982 0.615 0.981 0.984 0.646 0.979 0.970 1.792

ITS 0.583 1.000 1.000 0.618 0.963 1.000 0.665 0.954 1.000 2.011
GumbelSoft 0.788 0.866 0.812 0.848 0.837 0.722 0.911 0.704 0.572 2.027

Table 3: A comparative analysis of the detectability across various decoding-based watermarking schemes. De-
tectability is assessed for varying token counts: 40, 60, and 100. The temperature for GumbelSoft is set to 0.3.
GumbelSoft shows high detectability and low perplexity compared with other decoding-based watermarks.
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Figure 5: Comparison of the robustness of decoding-
based watermark on Completion task. Blue histograms
indicate unattacked conditions and red histograms show
attacked scenarios. The AUROC is calculated for 40 de-
tection tokens, with GumbelSoft set at a 0.3 temperature.
Exp, Dip, and GS refer to Exponential, Dipmark, and
GumbelSoft, respectively. GumbelSoft and Exponential
show higher robustness when facing the T5-span attack.

statistic distributions between KGW and Gumbel-
Soft watermarks, is shown in Figure 6. The results
demonstrate that while attacked watermarked texts
under KGW show considerable overlap with un-
watermarked texts, our GumbelSoft watermark dis-
plays less overlap, indicating its greater robustness.

5 Conclusion

We observed that the GumbelMax-trick-based wa-
termark(GM watermark) produces identical re-
sponses to identical queries due to the determinis-
tic nature of both the Decoder and Pseudo-random
functions. To address this, we introduce three diver-
sified variants aimed at enhancing GM watermark
diversity. Furthermore, we question the need for an
Exponential transformation (Aaronson and Kirch-
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Figure 6: Comparison of final statistic for KGW and
GumbelSoft watermark on Completion task. The final
statistic is calculated for 40 detection tokens, with Gum-
belSoft set at the temperature of 0.3. The robustness of
GumbelSoft stems from the strong pattern of the GM
watermark, ensuring a large gap in the Final statistic
between watermarked text and natural text.

ner, 2023) in watermark embedding and propose a
new approach named Logits-Addition watermark.
Our experiments across these variants for both Ex-
ponential and Logits-Addition watermarks identi-
fied GumbelSoft, a softmax-based Logits-Addition
variant, as the optimal choice. Comparative analy-
sis with other decoding-based watermarks demon-
strated that GumbelSoft surpasses in detectability,
maintains lower perplexity, and ensures higher ro-
bustness.

Limitations

GumbelSoft watermark’s Ngram pseudo-random
function is susceptible to paraphrase attacks due
to its dependence on the previous h tokens for key
determination. In terms of quality assessment, we



solely rely on perplexity, whereas some studies
utilize downstream tasks for evaluation. Our math-
ematical analysis is focused solely on the Logits-
Addition watermarking technique, we do not pro-
vide a comprehensive mathematical analysis of the
GumbelSoft watermark.

Ethical Considerations

As advanced language models increasingly demon-
strate remarkable capabilities, concerns regarding
their misuse have escalated. Consequently, the
development of effective methods for detecting
machine-generated text has become crucial. The
GM watermark has emerged as a highly effec-
tive technique for differentiating between machine-
generated and natural text. Nevertheless, the GM
watermark is limited by issues of diversity, which
may hinder its practical application. The Gumbel-
Soft watermark represents a straightforward yet
effective strategy to address this limitation. This
approach maintains the watermark’s detectability
while significantly enhancing its generative diver-
sity. We believe that our method will facilitate the
broader implementation of the GM watermark in
various applications.
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A Baselines

Here, we present a consolidated mathematical rep-
resentation within a unified taxonomy for the base-
line watermark schemes. For the KGW scheme, as
proposed by Kirchenbauer et al. (2023):

• Context: The previous h tokens.

• Pseudo-random Function: Fsk(context)
hashes the context to seed, then uses this seed
to generate a random vector in {0, 1}|V|, the
vector has γ|V| 1’s and (1− γ)|V| 0’s.

• Decoder: Γ(ξt, lt) samples a token from
softmax(δ ∗ ξt + lt).

• Scorer: ϕ(ξt, wt) = ξt[wt].

• Statistic Aggregator:

Φ(s1, . . . , sT ) =

∑T
t=1 st − γT√
Tγ(1− γ)

For the Exponential scheme, as proposed by
Aaronson and Kirchner (2023):

• Context: The previous h tokens.

• Pseudo-random Function: Fsk(context)
hashes the context to a seed, then uses this
seed to generate a random vector in (0, 1)|V|,
each element is uniformly sample from (0,1).

• Decoder: Γ(ξt, lt) = argmax1≤i≤|V|
log ξt[i]
pt[i]

,
where pt = softmax(lt).

• Scorer: ϕ(ξt, wt) = − log(1− ξt[wt]).

• Statistic Aggregator:

Φ(s1, . . . , sT ) =
1√
T

T∑
t=1

st −
√
T

For the Dipmark scheme, as proposed by Wu
et al. (2023b):

• Context: The previous h tokens.

• Pseudo-random Function: Fsk(context)
hashes the context to a seed, then uses this
seed to generate a random permutation on the
vocabulary V .

• Decoder: Γ(ξt, lt) samples token ξt[i]
with probability λ(i) − λ(i − 1), where
λ(i) = max{

∑i
j=1 pt(ξt[j]) − α, 0} +

max{
∑i

j=1 pt(ξt[j]) − (1 − α), 0}, where
pt=softmax(lt).

• Scorer: ϕ(ξt, wt) = 1{wt∈ξt[γ|V|:|V|]}.

• Statistic Aggregator:

Φ(s1, s2, . . . , sT ) =

∑T
t=1 st − (1− γ)T√

T

For the ITS scheme, as proposed by Kuditipudi
et al. (2023):

• Context: A global watermark key sequence ξ-
list and the position index t. Each watermark
key ξ-list[i] consists of a permutation π on the
vocabulary and a random number µ in (0, 1).

• Pseudo-random Function: Fsk(context) =
ξ-list[t].

• Decoder: Γ(ξt, lt) = π−1(min{π(i) : pt({j :
π(j) ≤ π(i)}) ≥ µ}), where ξt = (µ, π) and
pt = softmax(lt).

• Scorer: ϕ(ξt, wt) = |µ − η(π(wt))|, where
η(k) = k−1

|V|−1 .

• Statistic Aggregator:

Φ(s1, s2, . . . , sT ) = −
1

T

T∑
t=1

st

We now explore the design principles underlying
these fundamental components.

Context For Watermark generators and detec-
tors, it is essential to recognize that they share
the same context, which is constrained to the pre-
vious tokens of wt. This limitation arises from
the auto-regressive nature of the Watermark gen-
erator, which sequentially generates tokens from
left to right. A conventional approach for con-
text selection is to use the previous h tokens:
wt−h, . . . , wt−1. However, this design is vulner-
able to paraphrase attacks, as such attacks can alter
these preceding tokens, subsequently modifying
the watermark key ξt, and ultimately affecting the
per-token score st. A more robust approach in-
volves considering the semantic meaning of previ-
ous tokens, based on the rationale that paraphrasing



maintains the semantics despite changing the to-
kens (Liu et al., 2023a). Kuditipudi et al. (2023)
suggest utilizing a global list for storing all water-
mark keys and retrieving a specific watermark key
using the position index t

Pseudo-random Function. The pseudo-random
function’s role is to determine the watermark key
ξt based on the given context. This function could
be as basic as a hash function of the context or
might involve leveraging an embedding model to
extract the context’s semantic content. An alterna-
tive method is to use the position index t to retrieve
a watermark key from a global list. It is crucial to
note that both the Watermark generator and detec-
tor share the same pseudo-random function.

Decoder. The decoder is integral to the Water-
mark generator, utilizing the watermark key ξt and
the logits vector lt to determine the subsequent
token wt. Implementation methods for this compo-
nent vary among different watermarks.

Scorer. The scorer is to establish a correlation
between the watermark key ξt and the token wt.
Nevertheless, using a global watermark key list and
the position index t for key retrieval can result in
a significant alignment shift issue. This problem
manifests as a misalignment between the water-
mark key ξt and the token wt in texts subjected to
insertion or deletion attacks. To address this, Ku-
ditipudi et al. (2023) recommend using alignment
cost or edit distance for computing the sequence
score, as opposed to the per-token score.

Statistic Aggregator. Finally, the statistic aggre-
gator compiles all per-token scores or employs a
single sequence score to ascertain the presence of a
watermark. A typical method involves calculating
the z-score and p-value of collected scores. Alter-
natively, one could use the empirical cumulative
distribution function (Kuditipudi et al., 2023) for
final statistical analysis.

B Mathematical Proofs

B.1 Unbiasedness for GumbelMax

We demonstrate that the GumbelMax-trick is math-
ematically equivalent to directly sampling from the
categorical distribution π, thereby establishing its
unbiased nature when utilized in text watermarking
applications.

Denote the vocabulary as V , the vector of log-
its as l = (l1, . . . , l|V|), and a sequence of inde-

pendent Gumbel-distributed random variables as
ξ1, . . . , ξ|V| ∼ Gumbel(0, 1).

Pξ∼Gumbel(0,1)|V|

[
argmax
1≤i≤|V|

{ξi + li} = x

]
(1)

= Pη∼Q(·)

[
argmax
1≤i≤|V|

ηi = x

]
(2)

= Pη∼Q(·) [ηx ≥ ηi, ∀i ̸= x] (3)

= E
Y∼q(·)

∏
i ̸=x

P [Y ≥ ηi]

 (4)

=

∫ +∞

−∞
f(y − lx)

∏
i ̸=x

F (y − li)dy (5)

=

∫ +∞

−∞
e−((y−lx)+e−(y−lx))

∏
i ̸=x

e−e−(y−li)dy

(6)

=

∫ +∞

−∞
e
∑|V|

i=1 −eli−y
elx−ydy (7)

=

∫ +∞

−∞
e−e−y

∑
i e

lie−yelxdy (8)

= Zpx

∫ +∞

−∞
e−Ze−y

e−ydy (9)

= Zpx
1

Z
(10)

= px (11)

In equation (2), we introduce a variable substitu-
tion ηi = ξi + li for simplification. Moving to
equation (4), we define the random variable Y to
represent ηx for enhanced clarity, and we assume
that Y follows the distribution q(.). Furthermore,
we utilize the independence of ηi, i = 1, . . . , |V|.
In equation (5), f(.) denotes the probability den-
sity function of the Gumbel(0,1) distribution, while
F (.) represents its cumulative distribution function.
Finally, in equation (9), we introduce Z =

∑
i e

li

as a notation simplification.

B.2 Equivalence of Two Representations

We contend that the token generation processes
for the Logits-Addition watermark and the Expo-
nential watermark are mathematically equivalent,
though their respective per-token scoring mech-
anisms differ. To illustrate this equivalence, we
present the following equations, equation (12) de-
fines the Logits-Addition watermark, while equa-
tion (15) corresponds to the definition of the Expo-



nential watermark.

w = argmax
1≤i≤|V|

{ηi + li} (12)

= argmax
1≤i≤|V|

eηi+li (13)

= argmax
1≤i≤|V|

−pi
log ξi

(14)

= argmax
1≤i≤|V|

log ξi
pi

(15)

Here, we utilize the relationship pi =
softmax(li) ∝ eli and ηi = − log(− log ξi).
In these notations, we omit the position index t for
simplicity, and we assume ηi ∼ Gumbel(0, 1) and
ξi ∼ Uniform(0, 1).

While the token generation processes for the
Logits-Addition watermark and the Exponential
watermark are equivalent, their scoring methods
are distinct:

w = η[w] (16)

= − log(− log ξ[w]) (17)

̸= − log(1− ξ[w]) (18)

Equation (16) specifies the per-token scoring for
the Logits-Addition watermark while equation (18)
is the scoring method for the Exponential water-
mark.

B.3 Expectation and Variance for Per-token
Score

We now establish the expected per-token score for
texts, distinguishing between those with and with-
out the Logits-Addition watermark. In the case of
unwatermarked texts, the watermark token, wt, ex-
hibits no correlation with ξt. Consequently, ξt[wt]
adheres to a Gumbel(0,1) distribution. This leads
to

E[st] = E[ξt[wt]] = γ,

Var[st] = Var[ξt[wt]] =
π2

6
.

Conversely, for watermarked texts, a correlation
exists between wt and ξt. This correlation alters
the distribution of ξt[wt], diverging it from the stan-
dard Gumbel(0,1) form. To compute its expected
value, we define ξt[wt] as a random variable X.
We then deduce its cumulative distribution func-
tion (CDF), F (x), and probability density function
(PDF), f(x). Utilizing this PDF, we calculate the
expectation of X. For simplification, we exclude
the position index ‘t’ in the subsequent equations.

Here, ξi represents ξ[i], implying ξw is equivalent
to ξt[wt], and similar conventions apply to other
notations.

F (x) = P [X ≤ x] (19)

= P [ξw ≤ x] (20)

= P [ξi + li − lw ≤ x,∀i] (21)

= P
[
eξi+li−lw ≤ ex, ∀i

]
(22)

= P
[
−1

log hi

pi
pw
≤ ex,∀i

]
(23)

= P
[
pi
pw
e−x ≤ − log hi, ∀i

]
(24)

=

|V|∏
i=1

P
[
pi
pw
e−x ≤ − log hi

]
(25)

=

|V|∏
i=1

1− P
[
− log hi ≤

pi
pw
e−x

]
(26)

=

|V|∏
i=1

1− (1− e−
pi
pw

e−x

) (27)

=

|V|∏
i=1

e
− pi

pw
e−x

(28)

= e
∑|V|

i=1
−pi
pw

e−x

(29)

= e
−e−x

pw (30)

In equation (22), we utilize the fact that pi ∝ eli

and ξi = − log(− log hi). Equation (24) leverages
the independence of hi. Equation (26) uses the
fact that −loghi ∼ Exp(1). Finally, equation (29)
employs the fact that

∑|V|
i=1 pi = 1. Hence, the

density function:

f(x) = F
′
(x) =

e−x

pw
e

−e−x

pw

The expectation:

E[ξt[wt]] = E[X] (31)

=

∫ +∞

−∞
xf(x)dx (32)

= −
∫ +∞

−∞
x
ex

pw
e

−ex

pw dx (33)

= − 1

pw
[pw log pw − γpw] (34)

= − log pw + γ (35)

The equation (32) use the fact that:∫ +∞

−∞
xexe

−ex

t dx = t log t− γt



We now prove the fact. This is not a standard in-
tegral that can be solved by elementary functions.
However, we can attempt to solve it using the sub-
stitution method and some properties of the Gamma
and incomplete Gamma functions, which are com-
monly used to handle integrals involving exponen-
tials of exponentials.

∫ +∞

−∞
xexe

−ex

t dx (36)

=

∫ +∞

0
log(u)e−u/tdu (37)

=

∫ +∞

0
log(vt)e−vtdv (38)

= t

∫ +∞

0
(log(v) + log(t))e−vdv (39)

= t log(t)

∫ +∞

0
e−vdv + t

∫ +∞

0
log(v)e−vdv

(40)

= t log(t) + t

∫ +∞

0
log(v)e−vdv (41)

= t log(t)− γt (42)

In Equation(35), we use variable substitution
u = ex, In Equation(36), we use variable sub-
stitution v = u

t , In Equation (39), we use the
definition of Euler-Mascheroni constant: γ =
−
∫ +∞
0 log(v)e−vdv.

As for the variance of the per-token score for
watermarked text, we can also derive it via the
probability density function f(x).

Var[st] (43)

= Var[ξt[wt]] (44)

= E[X2]− (E[X])2 (45)

=

∫ +∞

−∞
x2f(x)dx− (− log pw + γ)2 (46)

=

∫ +∞

−∞
x2
e−x

pw
e

−e−x

pw dx− (− log pw + γ)2

(47)

≤ 2pw
2

(1− pw)3
+

2

pw
− (− log pw + γ)2 (48)

In equation(48), we use the fact that

∫ +∞

−∞
x2
e−x

pw
e

−e−x

pw dx ≤ 2pw
2

(1− pw)3
+

2

pw

We now prove it:∫ +∞

0
x2
e−x

pw
e

−e−x

pw dx (49)

≤
∫ +∞

0
x2
e−x

pw
dx (50)

=
2

pw
(51)

∫ 0

−∞
x2
e−x

pw
e

−e−x

pw dx (52)

=

∫ +∞

0
x2
ex

pw
e

−ex

pw dx (53)

=

∫ +∞

0

x2

pw
e
(x− ex

pw
)
dx (54)

≤
∫ +∞

0

x2

pw
e
(1− 1

pw
)x
dx (55)

=
2pw

2

(1− pw)3
(56)

A similar theorem also holds for the Exponential
watermark. For unwatermarked text:

E[st] = E[− log(1− ξt[wt])] = 1

Var[st] = Var[− log(1− ξt[wt])] = 1

For watermarked text,

E[st] = E[− log(1− ξt[wt])]

≥ 1 + (
π2

6
− 1)(−pw log pw),

Var[st] = Var[− log(1− ξt[wt])]

= ψ1(1)− ψ1(1 +
1

pw
),

where ψ1 is the trigamma function. The proof can
be found in Fernandez et al. (2023)

C Experiment details

We describe all experiment details here. We run
all experiments five times and report the average
value.

C.1 Diversity
We began by carefully selecting 40 high-entropy
prompts to elicit a wide range of completions.
These prompts were split evenly into two cate-
gories: 20 prompts followed a Completion for-
mat tailored for Llama2-7b, while the remaining
20 were structured in a QA format, specifically



Diversity Detectability Quality

Self-Bleu ↓ Dist-1 ↑ Dist-2 ↑ AUROC ↑ FPR ↓ FNR ↓ PPL ↓

E
xp

on
en

tia
l

vanilla 1.000 0.010 0.014 1.000 0.000 0.000 10.953

drop_prob=0.05 0.367 0.222 0.529 1.000 0.000 0.000 11.450
drop_prob=0.10 0.227 0.254 0.633 1.000 0.000 0.001 11.423
drop_prob=0.20 0.146 0.300 0.733 1.000 0.000 0.001 11.839
drop_prob=0.30 0.113 0.307 0.766 1.000 0.000 0.002 11.911
drop_prob=0.40 0.087 0.317 0.788 1.000 0.001 0.005 11.964

shift_max=10 0.991 0.079 0.146 0.999 0.000 0.003 11.307
shift_max=30 0.798 0.158 0.333 0.999 0.000 0.002 11.084
shift_max=50 0.645 0.184 0.403 1.000 0.000 0.003 11.222

shift_max=100 0.414 0.221 0.496 0.999 0.000 0.003 11.102
shift_max=200 0.247 0.235 0.546 0.999 0.000 0.004 11.068

soft_temp=0.1 0.388 0.210 0.490 1.000 0.000 0.000 11.218
soft_temp=0.2 0.244 0.238 0.565 1.000 0.000 0.001 11.353
soft_temp=0.3 0.202 0.265 0.630 1.000 0.000 0.001 11.610
soft_temp=0.4 0.169 0.275 0.669 1.000 0.000 0.001 11.874
soft_temp=0.5 0.146 0.285 0.686 1.000 0.000 0.001 12.222

L
og

its
-A

dd
iti

on

vanilla 1.000 0.010 0.014 1.000 0.000 0.000 10.953

drop_prob=0.05 0.421 0.205 0.493 0.999 0.000 0.003 11.561
drop_prob=0.10 0.209 0.268 0.652 0.999 0.000 0.003 11.754
drop_prob=0.20 0.143 0.292 0.729 0.999 0.000 0.005 11.997
drop_prob=0.30 0.097 0.309 0.774 0.999 0.001 0.005 11.890
drop_prob=0.40 0.093 0.319 0.790 0.999 0.003 0.006 12.156

shift_max=10 0.991 0.078 0.144 0.999 0.000 0.006 11.228
shift_max=30 0.806 0.159 0.335 0.998 0.002 0.006 11.243
shift_max=50 0.627 0.188 0.412 0.998 0.000 0.006 11.250

shift_max=100 0.417 0.220 0.497 0.998 0.000 0.006 11.536
shift_max=200 0.246 0.242 0.559 0.998 0.001 0.007 11.243

soft_temp=0.1 0.370 0.213 0.497 1.000 0.000 0.001 11.159
soft_temp=0.2 0.227 0.243 0.581 1.000 0.000 0.002 11.309
soft_temp=0.3 0.158 0.254 0.608 1.000 0.000 0.001 11.820
soft_temp=0.4 0.121 0.276 0.661 1.000 0.000 0.001 12.831
soft_temp=0.5 0.100 0.298 0.699 1.000 0.000 0.001 14.140

Table 4: Comparison of three variants of both Exponential and Logits-Addition watermarks in the Completion
task. The variants include drop_prob=0.2, sampling from the language model directly at a 0.2 probability;
shift_max=100, where the watermark key is cyclically shifted within a 0-100 range; and soft_temp=0.3, which
uses a softmax sampling with a temperature of 0.3 to balance randomness. Vanilla is the original two GumbelMax
watermarks without any technique to enhance diversity. The detectability is measured by 100 detection tokens. Note
that Logits-Addition+soft_temp is our GumbelSoft watermark.

designed for Llama2-7b-chat. Each prompt was
queried 50 times, and we assessed the resulting
completions using metrics such as Self-Bleu, Dis-
tinct 1-gram, and Distinct 2-gram. The average
values of these metrics were then computed for the
20 prompts in each category. We control the max
generation length for each prompt to be 256 tokens.

For the soft_temp parameter, we tested five dif-
ferent temperature settings: 0.1, 0.2, 0.3, 0.4, and
0.5. In the case of the shifted watermark key, we
experimented with five maximum shift values: 10,
30, 50, 100, and 200. For drop probability, the
tested probabilities were 5%, 10%, 15%, 20%, and
40%. We evaluated detectability and quality using
a sample of 100 generated tokens, while diversity

assessments were conducted with a sample size of
256 tokens.

C.2 Detectability

The objective of text watermarking is to embed a
concealed pattern into generated texts and subse-
quently detect this pattern to ascertain if the text
is watermarked. We gathered 1,000 lengthy texts
from the news-like validation subset of the C4
dataset, dividing each text into two parts: the first
50 words as prompt and the remaining as gold-
completion. For each watermarking scheme, we
utilized Llama2-7b to create both watermarked
and unwatermarked completions for these 1,000
prompts. The effectiveness of each scheme was



then assessed using the corresponding detector to
evaluate 2,000 completions. Key metrics reported
include AUROC (Area Under the Receiver Operat-
ing Characteristic), FPR (False Positive Rate) at a
fixed FNR (False Negative Rate) of 0.01, and FNR
at a fixed FPR of 0.01.

Additionally, we compiled 1,000 lengthy texts
from the alpaca dataset. Unlike the C4 dataset, here
we used only the question as a prompt to query
Llama2-7b-chat, with the subsequent detection pro-
cess mirroring that of the C4 dataset.

In line with the detectability theorem by
Chakraborty et al. (2023), we anticipate higher de-
tectability in longer texts. Therefore, we report
detection metrics for generated token lengths of 40,
60, 80, and 100. However, for quality assessment,
we calculate perplexity only for texts with 100 gen-
erated tokens, as fewer tokens would inadequately
represent quality measures. We use llama2-13b and
llama2-13b-chat to evaluate ppl for the texts gener-
ated by llama2-7b and llama2-7b-chat respectively.

The hyper-parameters employed for each wa-
termarking scheme are specified as follows: All
experiments are conducted at a temperature setting
of 1, except the GumbelSoft, which utilized a tem-
perature setting of 0.3 to achieve an equilibrium
between detectability and generation diversity. For
KGW, we adopt δ = 2 and γ = 0.1, following the
recommendations by Kirchenbauer et al. (2023).
For Dipmark, the parameters are set to α = 0.45
and γ = 0.5, by Wu et al. (2023b). Regarding ITS,
we utilize a sample of 500 texts from the C4 subset
for the computation of reference scores.

We repeat the experiment 5 times to calculate
the average value for each metric.

C.3 Robustness

We employ the T5-span attack (Kirchenbauer et al.,
2023) on both watermarked and unwatermarked
texts. Each word in a text undergoes a potential
attack with a probability of 0.5. For attacked words,
we use their immediate five-word context (preced-
ing and following) and apply t5-large (Raffel et al.,
2019) for context-based word prediction, replac-
ing the original word with the predicted one. This
process may occasionally retain the original word;
however, we opt not to enforce unique substitutions
to avoid excessive time consumption.

KGW Exp Dip ITS GS
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Figure 7: Comparison of robustness of decoding-based
watermark on QA task. Blue histograms indicate
unattacked conditions and red histograms show attacked
scenarios. The AUROC is calculated for 40 detection
tokens, with GumbelSoft set at a 0.3 temperature. Exp,
Dip, and GS refer to Exponential, Dipmark, and Gum-
belSoft, respectively.

D More Related Work

Zero-shot Methods. More Zero-shot methods
are listed as follows: Recent studies include Kr-
ishna et al. (2023) advocating retrieval against para-
phrase attacks, Su et al. (2023) leveraging log-rank
ratios, Solaiman et al. (2019) using log probability,
Bao et al. (2023) focusing on conditional probabil-
ity curvature, and Venkatraman et al. (2023) em-
ploying uniform information density for improved
detection.

Training-based methods. More training-based
methods are listed as follows: OpenAI (2023b);
Tian (2023) training classifiers from mixed sources,
Yin et al. (2023) using graph structures and con-
trastive learning, and Tian et al. (2023) applying
positive unlabeled training for classifier develop-
ment.

Watermarking Techniques. More watermark-
ing techniques are listed as follows: Techniques
include text formatting for embedding watermarks
by Por et al. (2012); Rizzo et al. (2016), context-
aware lexical substitution by Yang et al. (2021),
syntactic modifications by Atallah et al. (2001);
Meral et al. (2009), training data watermarking by
Liu et al. (2023b); Tang et al. (2023), a publicly
detectable watermark proposed by Fairoze et al.
(2023), and leveraging semantic meaning for ro-
bustness by Ren et al. (2023).

There are also some surveys on machine-
generated content detection (Wu et al., 2023a; Yang
et al., 2023b) and text watermarking (Liu et al.,
2024).



E Responsible NLP Research

The C4 dataset is under the terms of ODC-BY and
the Alpaca dataset is under the terms of Creative
Commons NonCommercial (CC BY-NC 4.0). Our
research fully obeys these licenses. C4 and Alpaca
datasets are publicly available and do not contain
private information for any individual.
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